skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "White, T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 8, 2025
  2. Free, publicly-accessible full text available January 6, 2026
  3. The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near 100 GPa with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024 
    more » « less
  4. The structural evolution of laser-excited systems of gold has previously been measured through ultrafast MeV electron diffraction. However, there has been a long-standing inability of atomistic simulations to provide a consistent picture of the melting process, leading to large discrepancies between the predicted threshold energy density for complete melting, as well as the transition between heterogeneous and homogeneous melting. We make use of two-temperature classical molecular dynamics simulations utilizing three highly successful interatomic potentials and reproduce electron diffraction data presented by Mo et al. [Science 360, 1451–1455 (2018)]. We recreate the experimental electron diffraction data, employing both a constant and temperature-dependent electron–ion equilibration rate. In all cases, we are able to match time-resolved electron diffraction data, and find consistency between atomistic simulations and experiments, only by allowing laser energy to be transported away from the interaction region. This additional energy-loss pathway, which scales strongly with laser fluence, we attribute to hot electrons leaving the target on a timescale commensurate with melting. 
    more » « less
  5. Context. Large spectroscopic surveys of the Milky Way must be calibrated against a sample of benchmark stars to ensure the reliable determination of atmospheric parameters. Aims. Here, we present new fundamental stellar parameters of seven giant and subgiant stars that will serve as benchmark stars for large surveys. The aim is to reach a precision of 1% in the effective temperature. This precision is essential for accurate determinations of the full set of fundamental parameters and abundances for stars observed by the stellar surveys. Methods. We observed HD 121370 ( η Boo), HD 161797 ( μ Her), HD 175955, HD 182736, HD 185351, HD 188512 ( β Aql), and HD 189349, using the high angular resolution optical interferometric instrument PAVO at the CHARA Array. The limb-darkening corrections were determined from 3D model atmospheres based on the STAGGER grid. The T eff were determined directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. We estimated surface gravities from comparisons to Dartmouth stellar evolution model tracks. The spectroscopic observations were collected from the ELODIE and FIES spectrographs. We estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutral and singly ionised iron. Results. For six of the seven stars, we measured the value of T eff to better than 1% accuracy. For one star, HD 189349, the uncertainty on T eff is 2%, due to an uncertain bolometric flux. We do not recommend this star as a benchmark until this measurement can be improved. Median uncertainties for all stars in log  g and [Fe/H] are 0.034 dex and 0.07 dex, respectively. Conclusions. This study presents updated fundamental stellar parameters of seven giant and subgiant stars that can be used as a new set of benchmarks. All the fundamental stellar parameters were established on the basis of consistent combinations of interferometric observations, 3D limb-darkening modelling, and spectroscopic analysis. This paper in this series follows our previous papers featuring dwarf stars and stars in the metal-poor range. 
    more » « less
  6. Context. Stellar models applied to large stellar surveys of the Milky Way need to be properly tested against a sample of stars with highly reliable fundamental stellar parameters. We have established a programme aiming to deliver such a sample of stars. Aims. Here we present new fundamental stellar parameters of nine dwarf stars that will be used as benchmark stars for large stellar surveys. One of these stars is the solar-twin 18 Sco, which is also one of the Gaia -ESO benchmarks. The goal is to reach a precision of 1% in effective temperature ( T eff ). This precision is important for accurate determinations of the full set of fundamental parameters and abundances of stars observed by the surveys. Methods. We observed HD 131156 ( ξ Boo), HD 146233 (18 Sco), HD 152391, HD 173701, HD 185395 ( θ Cyg), HD 186408 (16 Cyg A), HD 186427 (16 Cyg B), HD 190360, and HD 207978 (15 Peg) using the high angular resolution optical interferometric instrument PAVO at the CHARA Array. We derived limb-darkening corrections from 3D model atmospheres and determined T eff directly from the Stefan–Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE spectrograph and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutral and singly ionised iron. Results. For eight of the nine stars we measure the T eff ⪅ 1%, and for one star better than 2%. We determined the median uncertainties in log  g and [Fe/H] as 0.015 dex and 0.05 dex, respectively. Conclusions. This study presents updated fundamental stellar parameters of nine dwarf stars that can be used as a new set of benchmarks. All the fundamental stellar parameters were based on consistently combining interferometric observations, 3D limb-darkening modelling, and spectroscopic analysis. The next paper in this series will extend our sample to giants in the metal-rich range. 
    more » « less
  7. Biodiversity is in crisis, and insects are no exception. To understand insect population and community trends globally, it is necessary to identify and synthesize diverse datasets representing different taxa, regions, and habitats. The relevant literature is, however, vast and challenging to aggregate. The Entomological Global Evidence Map (EntoGEM) project is a systematic effort to search for and catalogue studies with long-term data that can be used to understand changes in insect abundance and diversity. Here, we present the overall EntoGEM framework and results of the first completed subproject of the systematic map, which compiled sources of information about changes in dragonfly and damselfly (Odonata) occurrence, abundance, biomass, distribution, and diversity. We identified 45 multi-year odonate datasets, including 10 studies with data that span more than 10 years. If data from each study could be gathered or extracted, these studies could contribute to analyses of long-term population trends of this important group of indicator insects. The methods developed to support the EntoGEM project, and its framework for synthesizing a vast literature, have the potential to be applied not only to other broad topics in ecology and conservation, but also to other areas of research where data are widely distributed. 
    more » « less
  8. Context. Benchmark stars are crucial as validating standards for current as well as future large stellar surveys of the Milky Way. However, the number of suitable metal-poor benchmark stars is currently limited, owing to the difficulty in determining reliable effective temperatures ( T eff ) in this regime. Aims. We aim to construct a new set of metal-poor benchmark stars based on reliable interferometric effective temperature determinations and a homogeneous analysis. The aim is to reach a precision of 1% in T eff , as is crucial for sufficiently accurate determinations of the full set of fundamental parameters and abundances for the survey sources. Methods. We observed ten late-type metal-poor dwarfs and giants: HD 2665, HD 6755, HD 6833, HD 103095, HD 122563, HD 127243, HD 140283, HD 175305, HD 221170, and HD 224930. Only three of them (HD 103095, HD 122563, and HD 140283) have previously been used as benchmark stars. For the observations, we used the high-angular-resolution optical interferometric instrument PAVO at the CHARA array. We modelled angular diameters using 3D limb-darkening models and determined effective temperatures directly from the Stefan-Boltzmann relation, with an iterative procedure to interpolate over tables of bolometric corrections. Surface gravities (log( g )) were estimated from comparisons to Dartmouth stellar evolution model tracks. We collected spectroscopic observations from the ELODIE and FIES spectrographs and estimated metallicities ([Fe/H]) from a 1D non-local thermodynamic equilibrium (NLTE) abundance analysis of unblended lines of neutral and singly ionised iron. Results. We inferred T eff to better than 1% for five of the stars (HD 103095, HD 122563, HD 127243, HD 140283, and HD 224930). The effective temperatures of the other five stars are reliable to between 2 and 3%; the higher uncertainty on the T eff for those stars is mainly due to their having a larger uncertainty in the bolometric fluxes. We also determined log( g ) and [Fe/H] with median uncertainties of 0.03 dex and 0.09 dex, respectively. Conclusions. This study presents reliable and homogeneous fundamental stellar parameters for ten metal-poor stars that can be adopted as a new set of benchmarks. The parameters are based on our consistent approach of combining interferometric observations, 3D limb-darkening-modelling and spectroscopic observations. The next paper in this series will extend this approach to dwarfs and giants in the metal-rich regime. 
    more » « less
  9. It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous, asymmetric, weakly magnetized, laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism, provided the magnetic Reynolds number of the plasma is sufficiently large. In this paper, we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator. We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic, x-ray selfemission imaging, and proton radiography. The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment. Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field, the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable. We conclude that, for turbulent laser-plasmas with supercritical magnetic Reynolds numbers, the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma, a finding consistent with theoretical expectations and simulations of turbulent dynamos. https://doi.org/10.1063/5.0084345 
    more » « less
  10. Fostering productive groupwork is a goal for many educators, but it can be difficult to implement effectively in mathematics classrooms. We have developed an approach, and a corresponding set of new tools, intended to support student participation in mathematically rich collaborative learning activities. This paper provides an overview of this 'Distributed by Design' approach. We elaborate key principles by illustrating three variations, in which we alternately distribute distinct but interdependent mathematical objects, views, or tools to each student in a cooperative group, and ask participants to coordinate those elements in completing a shared task. This approach is implemented with our MathNet software. 
    more » « less